Actor-Critic Algorithms for Risk-Sensitive MDPs

نویسندگان

  • Prashanth L. A.
  • Mohammad Ghavamzadeh
چکیده

In many sequential decision-making problems we may want to manage risk by minimizing some measure of variability in rewards in addition to maximizing a standard criterion. Variance-related risk measures are among the most common risk-sensitive criteria in finance and operations research. However, optimizing many such criteria is known to be a hard problem. In this paper, we consider both discounted and average reward Markov decision processes. For each formulation, we first define a measure of variability for a policy, which in turn gives us a set of risk-sensitive criteria to optimize. For each of these criteria, we derive a formula for computing its gradient. We then devise actor-critic algorithms for estimating the gradient and updating the policy parameters in the ascent direction. We establish the convergence of our algorithms to locally risk-sensitive optimal policies. Finally, we demonstrate the usefulness of our algorithms in a traffic signal control application.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variance Adjusted Actor Critic Algorithms

We present an actor-critic framework for MDPs where the objective is the variance-adjusted expected return. Our critic uses linear function approximation, and we extend the concept of compatible features to the variance-adjusted setting. We present an episodic actor-critic algorithm and show that it converges almost surely to a locally optimal point of the objective function. Index Terms Reinfo...

متن کامل

Algorithms for CVaR Optimization in MDPs

In many sequential decision-making problems we may want to manage risk by minimizing some measure of variability in costs in addition to minimizing a standard criterion. Conditional value-at-risk (CVaR) is a relatively new risk measure that addresses some of the shortcomings of the well-known variance-related risk measures, and because of its computational efficiencies has gained popularity in ...

متن کامل

How to Rein in the Volatile Actor: A New Bounded Perspective

Actor-critic algorithms are amongst the most well-studied reinforcement learning algorithms that can be used to solve Markov decision processes (MDPs) via simulation. Unfortunately, the parameters of the so-called “actor” in the classical actor-critic algorithm exhibit great volatility — getting unbounded in practice, whence they have to be artificially constrained to obtain solutions in practi...

متن کامل

Risk-Constrained Reinforcement Learning with Percentile Risk Criteria

In many sequential decision-making problems one is interested in minimizing an expected cumulative cost while taking into account risk, i.e., increased awareness of events of small probability and high consequences. Accordingly, the objective of this paper is to present efficient reinforcement learning algorithms for risk-constrained Markov decision processes (MDPs), where risk is represented v...

متن کامل

Actor-Critic for Linearly-Solvable Continuous MDP with Partially Known Dynamics

In many robotic applications, some aspects of the system dynamics can be modeled accurately while others are difficult to obtain or model. We present a novel reinforcement learning (RL) method for continuous state and action spaces that learns with partial knowledge of the system and without active exploration. It solves linearly-solvable Markov decision processes (L-MDPs), which are well suite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013